Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 150-158, 2021.
Article in Chinese | WPRIM | ID: wpr-906156

ABSTRACT

Objective:To identify 24 <italic>Rana</italic> species such as <italic>Rana dybowskii</italic> by mitochondrial cytochrome C oxidase subunit I (<italic>CO</italic>Ⅰ) gene-based DNA barcoding and build the neighbour-joining (NJ) tree for hierarchical cluster analysis, so as to provide a basis for the identification and classification of <italic>Rana</italic> species as well as the discovery of new species. Method:<italic>R. dybowskii</italic>, <italic>R. chensinensis</italic>, <italic>R. amurensis</italic>, <italic>R. culaiensi</italic>s, and <italic>R. huanrenesis</italic>, ten for each species, were collected for DNA extraction and polymerase chain reaction (PCR) amplification<italic> </italic>and sequencing. A total of 50 <italic>CO</italic>Ⅰ gene sequences were obtained. Then 163 <italic>CO</italic>Ⅰ gene sequences for 24 species of <italic>Rana</italic> and one <italic>CO</italic>Ⅰ gene sequence for <italic>Pelophylax</italic>,<italic> Odorrana</italic>, <italic>Nidirana</italic>, <italic>Hylarana</italic>, and <italic>Amolops</italic> were harvested from GenBank. After sequence alignment by MEGA X, the parsimony-informative sites of <italic>CO</italic>Ⅰ gene sequences were analyzed and the intraspecific and interspecific genetic distances were calculated, followed by the built of NJ tree and hierarchical cluster analysis. Result:The <italic>CO</italic>Ⅰ gene sequences of 24<italic> Rana</italic> species including <italic>R. dybowskii</italic> were 554 bp in length and there were 210 parsimony-informative sites in total. The intraspecific genetic distance of each species was smaller than 2%. Except that the interspecific genetic distance between <italic>R. sangzhiensis</italic> and <italic>R. zhengi</italic> was 0.004, the genetic distances between the other species ranged from 0.024 to 0.228. <italic>R. sangzhiensis</italic> and <italic>R. zhengi</italic> were clustered into one branch and some <italic>R. dybowskii</italic> and <italic>R. uenoi</italic> into one branch. There were two separate branches for <italic>R. chensinensis</italic> and the other species were all clustered independently. Conclusion:<italic>CO</italic>Ⅰ-based DNA barcoding enabled the identification of 24 species of <italic>Rana</italic> including <italic>R.dybowskii</italic>. The findings supported that <italic>R. sangzhiensis</italic>, <italic>R. zhengi</italic>, <italic>R. coreana</italic>, and <italic>R. kunyuensis</italic> were the same species. One branch of <italic>R. chensinensis </italic>might be one of the four undownloaded species in Ranidae or a new species. The results have demonstrated that <italic>CO</italic>Ⅰ-based DNA barcoding allows not only the identification of 24 species of Rana including <italic>R. dybowskii </italic>but also the classification of ranidae species and the discovery of new species or subspecies.

2.
Chinese Medical Journal ; (24): 1045-1050, 2018.
Article in English | WPRIM | ID: wpr-686984

ABSTRACT

<p><b>Background</b>Magnetic resonance (MR) imaging provides a unique, noninvasive diagnostic platform to quantify the physiological and biochemical variables of skeletal muscle at rest. This study was to investigate the difference in thigh skeletal muscles between snowboarding halfpipe athletes and healthy volunteers via multiparametric MR imaging.</p><p><b>Methods</b>A comparative study was conducted between 12 healthy volunteers and 14 snowboarding halfpipe athletes. MR scanning targeted the left leg at the level of the proximal thigh on a 3.0T MR system. The measured parameters compared between the two groups included T1, T2, T2* relaxation times, fat fraction (FF), and cross-sectional area (CSA) of the quadriceps femoris and the hamstring muscles. Statistical analysis was carried out using independent sample t-test. Interrater reliability was also assessed with intraclass correlation coefficients (ICCs).</p><p><b>Results</b>It was statistically equivalent between two groups in age, body mass index, thigh circumference, calf circumference, systolic blood pressure, and resting heart rate (all P > 0.05). However, the T1 and T2 values of the hamstring muscles in the athlete group were found to be significantly shorter than those in control group (T1: 1063.3 ± 24.1 ms vs. 1112.0 ± 38.2 ms in biceps femoris, 1050.4 ± 31.2 ms vs. 1095.0 ± 39.5 ms in semitendinosus, 1053.1 ± 31.7 ms vs. 1118.4 ± 40.0 ms in semimembranosus, respectively; T2: 33.4 ± 0.7 ms vs. 36.1 ± 1.9 ms in biceps femoris, 34.6 ± 2.0 ms vs. 37.0 ± 1.9 ms in semitendinosus, 36.9 ± 1.5 ms vs. 38.9 ± 2.4 ms in semimembranosus, respectively; all P < 0.05) although T2* relaxation time was detected with no significant difference. The FF of the hamstring muscles was obviously less than the control group (5.5 ± 1.9% vs. 10.7 ± 4.7%, P < 0.001). In addition, the quadriceps' CSA in the athlete group was substantially larger than the control group (8039.0 ± 1072.3 vs. 6258.2 ± 852.0 mm, P < 0.001). Interrater reliability was excellent (ICC: 0.758-0.994).</p><p><b>Conclusion</b>Multiple MR imaging parameters indicated significant differences between snowboarding halfpipe athletes and healthy volunteers in the thigh skeletal muscles.</p>


Subject(s)
Adolescent , Adult , Humans , Male , Young Adult , Athletes , Cross-Sectional Studies , Healthy Volunteers , Magnetic Resonance Imaging , Muscle, Skeletal , Diagnostic Imaging , Physiology , Skiing , Physiology , Thigh , Diagnostic Imaging , Physiology
3.
China Journal of Chinese Materia Medica ; (24): 1572-1577, 2017.
Article in Chinese | WPRIM | ID: wpr-350146

ABSTRACT

Ranae Oviductus has a high economic and social value, but its adulterants are more numerous, which causes a great confusion to the market. Using DNA bar code technology based on COI sequence for PCR amplification and sequencing of the identified Rana dybowskii, R. chensinensis, R. huanrensis and R. amurensiss, the COI gene database of four species of Rana was established, and comparing the measured sequence with the sequence of GenBank, four kinds of Rana were identified. The MEGA (molecular evolutionary genetics analysis) 7 .0 software was used to calculate the genetic distance of K2P and construct the NJ (neighbor-joining) system cluster tree. The sequence of the four species of Rana measured were clustered into one group with the sequence of the four kinds of Rana downloaded from GenBank, but separated from the two outer groups downloaded from GenBank. The COI gene of the R. dybowskii was likely to have regional differences, however this technique failed to distinguish male and female Rana. The results showed that DNA bar code technology could accurately identify the base of original animal of R. oviductus. It indicates that DNA bar code COI provides a new method for the identification of R. oviductus.

SELECTION OF CITATIONS
SEARCH DETAIL